Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.100$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(2-Bromophenyl)- N^{\prime}-(4-methoxybenzoyl)thiourea

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$, the 4-methoxybenzoyl and 2-bromophenyl fragments are located trans and cis, respectively, with respect to the thione group across the $\mathrm{C}-\mathrm{N}$ bonds. The central carbonylthiourea $\left(\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{SO}\right)$ moiety makes dihedral angles with the 4-methoxybenzoyl and 2-bromophenyl fragments of 10.57 (12) and $46.88(13)^{\circ}$, respectively.

Comment

In the title compound, (I), the 4-methoxybenzoyl and 2bromophenyl groups are located at trans and cis positions, respectively, about the thione group across the $\mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{C} 8-\mathrm{N} 2$ bonds. The bond lengths and angles are comparable with other thioureas, such as N^{\prime}-benzoyl- N-(p-bromophenyl)thiourea (Yamin \& Yusof, 2003a) and N-benzoyl $-N^{\prime}$ phenylthiourea (Yamin \& Yusof, 2003b). The central carbonylthiourea (C7/N1/C8/S1/N2/O1), 4-methoxyphenyl (C1-C6/O2/C15) and 2-bromophenyl (C9-C14/Br1) moieties are all planar. The maximum deviation is 0.066 (4) \AA for atom C15 from the mean plane of the 4-methoxyphenyl group. The dihedral angles between the central carbonylthiourea moiety and both the 4-methoxyphenyl and 2-bromophenyl fragments are 10.57 (12) and $46.88(13)^{\circ}$, respectively. The inclination between the aryl fragments of $57.42(16)^{\circ}$, is larger than the values of 38.61 (11) and 33.3 (1) ${ }^{\circ}$ in N^{\prime}-benzoyl- N - (p-bromophenyl)thiourea and N-benzoyl- N^{\prime}-phenylthiourea, respectively. There are two intramolecular interactions, N2$\mathrm{H} 2 A \cdots \mathrm{O} 1$ and $\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{~S} 1$. As a result, two pseudo-sixmembered rings $(\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1 \cdots \mathrm{H} 2 A$ and $\mathrm{H} 14 A \cdots \mathrm{~S} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 14)$ are formed. The crystal structure is stabilized by weak intermolecular interactions $\left[\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{i}}\right.$ and $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~S} 1^{\mathrm{ii}}$; symmetry code: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; Table 2], with molecules arranged as dimers parallel to the $a c$ face (Fig. 2).

Experimental

A solution of 2-bromoaniline ($1.50 \mathrm{~g}, 8.77 \mathrm{mmol}$) in acetone (50 ml) was added dropwise to an acetone solution (50 ml) containing an equimolar amount of 4-methoxybenzoyl isothiocyanate in a twonecked round-bottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and

Received 5 October 2004 Accepted 11 October 2004 Online 22 October 2004
washed with ethanol-distilled water, then dried in a vacuum. Recrystallization from methanol yielded single crystals suitable for X-ray analysis (yield $76 \%, 2.44 \mathrm{~g}, 6.66 \mathrm{mmol}$; m.p. $433-435 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.50\left(\mathrm{CH}_{3}, s\right), 11.61(\mathrm{NH}, s), 12.65(\mathrm{NH}, s), 7.06-8.02\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ rings); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\delta: 55.81\left(\mathrm{CH}_{3}\right), 180.76$ (CS), 167.95 (CO), 114.09-163.57 ($\mathrm{C}_{6} \mathrm{H}_{4}$ rings).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=365.24$
Monoclinic, $P 2_{d} / n$
$a=13.576(2) \AA$
$b=4.0362(6) \AA$
$c=27.495(4) \AA$
$\beta=98.621(3)^{\circ}$
$V=1489.6(4) \AA^{3}$
$Z=4$

$D_{x}=1.629 \mathrm{Mg} \mathrm{m}^{-3}$

$M_{r}=365.24$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=13.576$ (2) A
$b=4.0362$ (6) A
$\beta=98.621(3)^{\circ}$
$Z=4$
Cell parameters from 1580 reflections
$\theta=1.5-26.0^{\circ}$
$\mu=2.91 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab, colourless
$0.30 \times 0.13 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.471, T_{\text {max }}=0.772$
7392 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0489 P)^{2}\right. \\
&+0.0218 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

2891 independent reflections
2095 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-15 \rightarrow 16$
$k=-4 \rightarrow 4$
$l=-33 \rightarrow 33$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.100$
$S=1.03$
2891 reflections
190 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C8	$1.662(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.378(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.229(4)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.338(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$120.9(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$125.9(2)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$115.6(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$118.5(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.94	$2.640(3)$	138
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{~S} 1$	0.93	2.84	$3.224(3)$	106
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.93	2.80	$3.686(3)$	160
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.86	2.87	$3.478(3)$	129

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3}, 1.2 U_{\text {eq }}(\mathrm{C})$ for CH and $1.2 U_{\text {eq }}(\mathrm{N})$ for NH groups.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used

Figure 1
The molecular structure of the title compound, (I), shown with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
Packing diagram of compound (I). The dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.
to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M. \& Yusof, M. S. M. (2003a). Acta Cryst, E59, o340-341.
Yamin, B. M. \& Yusof, M. S. M. (2003b). Acta Cryst, E59, o151-o152.

[^0]: (C) 2004 International Union of Crystallography All rights reserved

